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Abstract 
 

  We describe a probabilistic framework for recognizing 

human activities in monocular video based on simple 

silhouette observations in this paper. The methodology 

combines kernel principal component analysis (KPCA) 

based feature extraction and factorial conditional random 

field (FCRF) based motion modeling. Silhouette data is 

represented more compactly by nonlinear dimensionality 

reduction that explores the underlying structure of the 

articulated action space and preserves explicit temporal 

orders in projection trajectories of motions. FCRF models 

temporal sequences in multiple interacting ways, thus 

increasing joint accuracy by information sharing, with the 

ideal advantages of discriminative models over generative 

ones (e.g., relaxing independence assumption between 

observations and the ability to effectively incorporate both 

overlapping features and long-range dependencies). The 

experimental results on two recent datasets have shown 

that the proposed framework can not only accurately 

recognize human activities with temporal, intra- and 

inter-person variations, but also is considerably robust to 

noise and other factors such as partial occlusion and 

irregularities in motion styles. 

 

1. Introduction 

  Human motion analysis has recently attracted increasing 

interest from computer vision researchers [1]. In particular, 

human activity recognition has a wide range of promising 

applications, e.g., video surveillance, intelligent interface, 

and interpretation/retrieval of sport events. 

Generally, there are two important questions involved in 

activity recognition. One is how to extract useful motion 

information from raw video data, and the other is how to 

model reference movements, while enabling training and 

recognition methods to effectively deal with variations at 

spatial and temporal scales within similar motion classes. 

Various cues have been used in the recent literature, e.g., 

key poses [11,12,13], optical flow [4], local descriptors [5], 

trajectories or joint angles from tracking [2,6], silhouettes 

[3,7,12], etc. However, the use of key frames lacks motion 

information. Image measurements in terms of optical flow 

or interest points could be unreliable in cases of smooth 

surfaces, motion singularities and low-quality videos. 

Feature tracking is not also easy due to the big variability 

in the appearance and articulation of the human body.  

Human activities can be regarded as temporal variations 

of human silhouettes. Silhouette extraction from video is 

relatively easier for current imperfect vision techniques, 

especially in the imaging setting with fixed cameras. So the 

method that we present here prefers to use (probably 

imperfect) space-time silhouettes for human activity 

representation with kernel-induced subspace analysis.  

Since human activities evolve dynamically over time, 

temporal models such as HMMs (Hidden Markov Models) 

and their variants [2,10] have been widely used to model 

human motions. However, a strong assumption of 

independence is usually made in such generative models, 

which makes them difficult to accommodate multiple 

overlapping features or long-range dependencies among 

observations. Conditional random fields (CRFs) [20] 

proposed by Lafferty avoid the independence assumption 

between observations, thus having the freedom to 

incorporate both overlapping features and long-range 

dependencies into the model. To the best of our knowledge, 

only two relevant works have tried different forms of 

conditional approaches for motion [9] or gesture [23] 

recognition. This paper further explores an alternative 

conditional model, i.e., factorial CRF [21] that has the joint 

discriminative learning ability. 

The contribution of this paper is to propose an integrated 

probabilistic framework, as shown in Fig. 1, for the task of 

activity recognition from simple silhouette observations. 

The proposed framework consists of two major modules, 

i.e., feature extraction and description in high-dimensional 

image space, and activity modelling and recognition in 

low-dimensional embedded space. We use KPCA [16] to 

discover the intrinsic structure of the articulated action 

space, and exploit factorial CRF [21] for activity modeling 

and recognition (no previous work has investigated FCRF 

in this context). Experimental results on two datasets have 

demonstrated both effectiveness and robustness of the 

proposed framework.  
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Figure 1. Flowchart of the proposed framework of activity recognition with discriminative conditional graphical model 
 

  The remainder of this paper is organized as follows. 

Section 2 simply reviews related work and Section 3 

details feature extraction. Section 4 describes activity 

modeling and recognition. The results are presented and 

discussed in Section 5, prior to a summary in Section 6. 

2. Related work 

Current studies on human activity recognition have tried 

a variety of features and classification methods. In [6], an 

activity was represented by a set of pose and velocity 

vectors of major body parts and recognition of a sequence 

of pose vectors was achieved with a method of indexing of 

multidimensional hash tables. Other approaches exploited 

local descriptors based on interest points in images or 

videos. Schuldt et al. [5] constructed video representations 

in terms of local space-time features and integrated such 

representations with SVM for action recognition. Optical 

flow has also been widely used. Efros et al. [4] proposed a 

spatiotemporal descriptor based on blurred optical flow 

measurements to recognize actions. The use of features 

available from silhouettes is increasingly popular. Bobick 

and Davis [3] derived temporal templates from background 

subtracted images for human movement recognition. Blank 

et al. [7] utilized properties of the solution to the Poisson 

equation to extract features from space-time silhouettes for 

action recognition, detection and clustering.  

The features should be simple, intuitive and reliable to 

extract without manual labour. As stated before, our work 

will use silhouettes as cues. Human silhouettes through the 

activity duration may be considered as points, and these 

points can be expected to lie on a low-dimensional 

manifold embedded in the high-dimensional image space. 

Therefore we are motivated to represent and analyze 

human motions in a more compact subspace rather than the 

ambient space. 

A few promising methods for nonlinear dimensionality 

reduction have been recently proposed, e.g., isometric 

mapping (Isomap) [15], local linear embedding (LLE) [14], 

KPCA [16], to name just a few. Some researchers have 

explored these methods’ applications, e.g., pose recovery 

[18] and visual tracking [19] in the area of human motion 

analysis. However, research on nonlinear manifold learning 

for complex activity recognition is still quite limited. The 

works of [18,19] usually obtained the embedded space 

from the same motion such as walking or running, but here 

we wish to learn the embedded activity space using all 

various motion classes.  

HMM and its variants have been the dominant tools in 

human motion modelling [2,10], e.g., Nguyen et al. [2] 

learned and detected activities from movement trajectories 

using the hierarchical HMMs. Discriminative CRFs [20] 

were firstly introduced in the natural language processing 

community. Due to its merits over HMMs, there has 

recently been increasing interest in using CRFs for vision 

tasks, e.g., image region labeling [24], object segmentation 

[22], and gesture recognition [23]. A work closely related 

to this paper is [9], in which human motions were 

recognized using a linear-chain CRF based on motion 

capture data or image descriptors combining both shape 

context and pairwise edge features. Compared with [9], the 

features used in this work can be obtained more easily and 

reliably. In particular, our work further explores a better 

alternative method for modelling and recognizing human 

activities conditionally.  

Being a joint graphical model with the richer structure, 

FCRF [21] has been demonstrated to be superior, in the 

chunking task, to the general linear-chain CRF model that 

does the individual labelling task sequentially. However, 

FCRF has not yet been used in the vision community. Our 

work will extend the original FCRF to model the 

kernel-induced motion trajectories where the underlying 

graphical model can capture long-range dependencies 

across frames.  

3. Feature selection 

Informative features are critical to the success of the 



 

activity models. We select silhouettes as basic inputs, and 

perform nonlinear dimensionality reduction for more 

compact representation.  

3.1.  Silhouette extraction and representation 

Given an action video VVVV with T frames, i.e., VVVV = {IIII1, 

IIII2,…, IIIIT}, our basic assumption is that the associated 

sequence of moving silhouettes FSFSFSFS = {SSSS1, SSSS2,…, SSSST} can be 

obtained from the original video. The size and the position 

of the foreground region vary with the distance of object to 

camera, the size of object and the performed activity. The 

silhouette images are thus centred and normalized on the 

basis of keeping the aspect ratio property of the silhouette 

so that the resulting images NSNSNSNS    = {R1, R2,…, RT} contain 

as much foreground as possible, do not distort the motion 

shape, and are of equal dimensions ri×ci for all input 

frames. Fig. 2 (top) shows an example of the normalized 

silhouette images. Further, if we represent each raw 

silhouette image Ri as a vector rrrri in Rri×ci
 in a row-scan 

manner, the whole video will be accordingly represented as 

VrVrVrVr    = {rrrr1, rrrr2,…, rrrrT}. 
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Figure 2. The normalized silhouette sequences of running (top) 

and the illustration of block-based feature representation (bottom)   

 

  For computational efficiency, we try the block-based 

features, as illustrated in Fig. 2 (bottom). We equidistantly 

divide each silhouette image into h×w non-overlapping 

sub-blocks. Then the normalized value of each sub-block is 

calculated by Ni=b(i)/mv, i=1, 2, …, h×w, where b(i) is the 

number of foreground pixels in the ith sub-block, and mv 

means the maximum value of all b(i). The resulting 

silhouette descriptor at frame t is FFFFt = [N1,N2,…,Nh×w]
T
 in 

Rh×w
, and the whole video is accordingly represented as VFVFVFVF    

= {FFFF1, FFFF2,…, FFFFT}. In fact, a raw silhouette representation    VrVrVrVr 

may be considered as a special case of the block-based 

features, i.e., the sub-block size is 1×1, a pixel. 

3.2.  Nonlinear dimensionality reduction 

To obtain compact description and efficient computation, 

we use the KPCA algorithm [16] to perform nonlinear 

dimensionality reduction, based on the following two 

considerations: 1) KPCA provides an efficient subspace 

learning method to discover the nonlinear structure of the 

‘action space’. Although it does not obviously consider the 

local manifold geometry, it can be related to Isomap and 

LLE in a kernel framework, as discussed in [17], and 2) 

although nonlinear methods such as Isomap and LLE do 

yield impressive results on some benchmark datasets, they 

are defined only on the training data points and how to map 

new data points remains unclear. In contrast, KPCA may be 

simply applied to any new data point.  

Given a set of training samples Tx = {x1,…, xM} in RD
 

with M elements, the aim of subspace learning is to find an 

embedding set Ey = {y1,…, yM} in a low-dimensional space 

Rd
 (d<D). For KPCA, each vector xi is first nonlinearly 

mapped into the Hilbert space H by ϕ: RD→H. PCA is then 

applied on the mapped data Tϕ = {ϕ(x1), . . ., ϕ(xM)} in H 

[16]. Fortunately, this explicit mapping process is not 

required at all by the virtue of ‘kernel tricks’. Let k be a 

semi-positive definite kernel function, and it defines a 

nonlinear relationship between two vectors xi and xj by 

( ) ( ) ( )( )jiji ,k xxxx φ⋅φ=     (1) 

The problem of finding the coefficients of the principal 

components in H can be reduced to the diagonalization of 

the kernel matrix K, 

ee KM =λ      (2) 

where Kij=k(xi, xj), e=[e1,e2,…,eM]
T so that ( )∑

=

φ=
M

1i

iie xZZZZ . 

The projection of a novel point x onto the jth principle axis 
jz can be expressed implicitly as  

( )( ) ( ) ( )( ) ( )∑∑
==

=φ⋅φ=φ⋅
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i

j
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i

j

i

j
,kee xxxxx  (3)  

We use the Gaussian kernel function for our experiments. 
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Figure 3. 3D visualization of PTMs in the KPCA-derived 

subspace, where the points with the same colors come from the 

same motion class 
 

  After obtaining the embedding space including the first d 

principal components, any one video V”V”V”V”    can be projected 

into an associated trajectory in d-dimensional feature space 

TOTOTOTO = {OOOO1, OOOO2, …, OOOOT}. Fig. 3 shows projection trajectories 

of motions (PTM) in case of Dataset I, in which temporal 

orders across frames are not labeled for clarity. 

4. Motion modeling and recognition 



 

The discriminative nature and underlying graphical 

structure of CRFs are very suitable for human motion 

analysis. Here we explore factorial CRF to label human 

activity sequences in the embedded space. To make this 

paper self-contained, we briefly review CRF and FCRF as 

follows (based on [20, 21]). 

4.1.  General CRF 

The general framework of CRFs [20] is as follows. Let 

G be an undirected model over sets of random variables s 

and o. Let s={st} and o={ot}, t=1,…,T so that s may be 

thought as a label sequence of an observed sequence o. Let 

C={{sc,oc}} be the set of cliques in G, then CRFs define 

the conditional probability of the state (or label) sequence 

given the observed sequence as 

( )
( )

( )∏
∈

θ Φ=
Cc

cc ,
Z

p osos
o

1
   (4) 

where ( ) ( )∑∏ ∈
Φ=

s
oso

Cc cc ,Z  is a normalization factor 

over all state sequences, and Φ  is a potential function 

which factorizes according to a set of features {fn} so that  

( ) ( )







λ=Φ ∑∑

=

T

t n

ccnncc t,,f,
1

exp osos   (5) 

where the model parameters { }nλ=θ  are a set of real 

weights, one weight per feature. 

Previous studies mainly used linear-chain CRFs, as 

shown in Fig. 4 (left), where a first-order Markov 

assumption is generally made among labels. Accordingly, 

the cliques of such a conditional model are the nodes and 

edges, so there are feature functions ( )t,,s,sf ttn o1− for 

each label transition and ( )t,,sg tn o for each label. 
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Figure 4. Graphical representation of (left) linear-chain CRF (if 

the dotted lines exit, it will represent a model with a context of 3 

observation timesteps, i.e., ω=1), and (right) two-chain factorial 

CRF including links between cotemporal labels, explicitly 

modeling limited probabilistic dependencies between two 

different label sequences. 

4.2.  Factorial CRF 

Dynamic CRFs [21] are a generalization of linear-chain 

CRFs that repeat structure and parameters over a sequence 

of state vectors – allowing one to represent distributed 

hidden states and complex interactions among labels, as in 

a dynamic Bayesian network. As a special case, the 

factorial CRF has linear chains of labels with connections 

between cotemporal labels, thus increasing joint accuracy 

by information sharing.  

  Considering a FCRF with L Chains, where sl,t is the 

variable in chain l at time t. The distribution over hidden 

state is defined as  

( )
( )

( )

( )




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where{Фl} are the potentials over the within-chain edges, 

{Ψl} are the potentials over the between-chain edges [21], 

and these potentials factorize according to the features {fk} 

and weights { kλ } of G, with the form of 

( ) ( )

( ) ( )







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1
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   (7) 

4.3.  Training and inference  

Given a set of the training samples ( ) ( ){ }N

i

ii , 1== soD , the 

parameters { }kλ=θ  can be estimated by optimizing the 

following conditional log-likelihood function 

( ) ( ) ( )( )ii

i

p osθ∑=θ logΩ    (8) 

The derivative of (8) with respect to kλ  associated with 

clique index c is 

( ) ( )( )

( )( ) ( )( )t,,fp

t,,f

i

c,tk

i t Cc

i

tc

i t

ii

c,tk

k

c

osos

os

s

∑∑∑∑

∑∑

∈

θ−

=
λ∂

∂Ω

 (9) 

where c,ts  denotes the variables of s at time step t in 

clique c of the 2-CRF, and sc ranges over assignments to c. 

 Generally, a penalized likelihood function is used in 

training the parameters in order to reduce over-fitting, 

i.e., ( ) ( ) ( )θ+θ=θ pp loglog ΩD  where ( )θp  is a Gaussian 

prior over parameters ( ( ) 







θ

ε
∝θ

2

2
2

1
expp ), so that the 

gradient becomes [21] 

( )
2ε

λ
−

λ∂

∂
=

λ∂

θ∂
k

kk

p ΩD
    (10) 

This convex function can be optimized by a number of 

techniques such as Quasi-Newton optimization methods.  

Typically two inference problems need to be solved, i.e., 

computing the marginal ( )os c,tp  over all cliques c,ts  



 

and the Viterbi decoding ( )oss
s

p~ max arg= . The former 

is used for parameter estimation, and the latter is used to 

label a new sequence.  

4.4.  Problem adaptation 

A set of key poses can represent an action, and the sets 

of key poses show differences from action to action, 

though with possible partial overlap among activities. Key 

poses have been used to describe actions [11-13], e.g., 

Dedeoglu et al. [13] established the template pose dataset 

to contain key poses for all actions, and actions were 

represented as a histogram of key poses it matches. But 

such methods ignore temporal information between poses 

(as an intuitive example, they cannot tell reverse pairs of 

actions such as sitting down and standing up). 

Assume that we wish to simultaneously perform both 

key-pose classification and activity classification. This 

problem can be solved by jointly representing these two 

tasks in a single graphical model: a two-chain FCRF, as 

shown in Fig. 4 (right), with one chain modelling the 

key-pose temporal process, and the other modelling the 

activity label, both representing their dependencies 

explicitly and preserving uncertainty between them. 

Accordingly, the problem is to learn a mapping of 

observations o to two different types of class labels, i.e., 

{ }cNs , 2, 1,1 L=∈ 1S  for Nc human activities and 

{ }Ks , 2, 1,2 L=∈ 2S  for K key poses, where o is a 

sequence of local observations (i.e., projection trajectory of 

a motion video here). 

The basic point in creating the key pose dataset is to 

include as much key frames as possible for a specific 

action and at the same time to pay attention to make the 

distance between inter-key frames of different actions as 

much as possible [13]. We use the MDL (Minimum 

Description Length) rule to determine the number K of key 

poses in the whole dataset, and use K-means clustering to 

obtain these key poses KP={P1, P2, …, PK} for training 

process.  

  To incorporate long-range dependencies, we modify the 

potential function in (7) to include a window parameter ω  

that defines the amount of past and future history to be 

used when predicting the state at time t, i.e.,  

( ) tt st,,tto aK ω+ω−=   (11)  

Following previous work [21], we adopt limited-memory 

BFGS optimizer to learn parameters with the variance of 

the prior 102 =ε , and loopy belief propagation is used for 

approximate inference. We factorize pair-wise features as 

( ) ( ) ( )t,st,,sf kc,tkc,tk oo ϕµ=  where the former is a binary 

function on the assignment, and the latter is a function 

solely of the input features.   

5. Experimental results 

  Extensive experiments have been carried out to evaluate 

the proposed framework. Note that the classification 

accuracy reported here is in terms of the percentage of the 

correctly recognized action sequences among all tests. 

5.1.  Activity datasets 

There is no common evaluation database in the domain 

of human activity recognition. Here we use two recent 

databases reported in [7] and [8], respectively. These two 

databases are appreciably sized (among current databases 

publicly available), in terms of the number of subjects, 

actions and videos.  

Dataset I: Different instances of the same activity may 

consist of varying relative speeds. Dataset I [8] consists of 

10 different activities performed by one subject, i.e., pick 

up object, jog in place, push, squash, wave, kick, bend to 

the side, throw, turn around, and talk on cell phone, and 10 

different instances for each activity. These activities were 

captured using two synchronized cameras that were about 

45 degrees apart. The example images are shown in Fig. 5 

(top). This dataset is used to systematically examine the 

effect of the temporal rate of execution (alone) on activity 

recognition (but also including slightly different 

intra-person motion styles among different instances).  

Dataset II: In addition to the temporal rates, there exists 

inter-person difference between the same activities since 

different people have different physical sizes and perform 

activities differently in motion styles (and speeds). Dataset 

II [7] consists of 81 low-resolution videos (180×144, 25fps) 

from 9 different people, each performing 9 activities, i.e., 

bend, jump jack (jack), jump-forward-on-two-legs (jump), 

jump-in-place-on-two-legs (pjump), run, gallop-sideways 

(side), walk, wave-one-hand (wave1), and wave-two-hands 

(wave2). Together with one more recently added activity of 

skip, this dataset in total includes 10 activities and 90 

videos. The sample images are shown in Fig. 5 (bottom). 

This dataset provides more realistic data for the test of the 

method’s versatility with respect to variations at both 

temporal and spatial scales. 
 

 

 
 

 

 
 

Figure 5. Example images from the activity datasets: from top to 

bottom and from left to right: Dataset I (top) - pick up object, jog 



 

in place, push, squash, wave, kick, bend to the side, throw, turn 

around, talk on cell phone, respectively, and Dataset II (bottom) - 

bend, jack, jump, pjump, run, side, skip, walk, wave 1 and wave 2, 

respectively 

5.2.  Experimental procedure 

We wish to compute an overall unbiased estimate of the 

recognition accuracy using the leaving-one-out validation 

method. We perform the round-robin activity recognition 

experiments. For Dataset I, we partition the dataset into 10 

disjoint sets, each containing 1 instance of every activity. 

Each time we leave one set out for the test, and use the 

remaining nine sets to learn both subspace and model 

parameters. Similarly, for Dataset II, we divide the dataset 

into 9 sets, each set including all activities from one 

subject. To perform the recognition of each left-out set 

each time, we learn both subspace and model parameters 

from the remaining eight sets. Thus, if one video in the 

left-out test set is classified correctly, it must have a high 

similarity to a video from a different person performing the 

same activity.  

Foreground detection is not our main concern in this 

work. We directly use the silhouette masks obtained in [7,8] 

for our experiments, though these silhouette images are not 

very satisfactory, including leaks and intrusions due to 

imperfect subtraction and shadows. We center and 

normalize all silhouette images into the same dimension 

(i.e., 64×48 pixels), and represent them as the block-based 

features with different sub-block sizes (e.g., 8×8, 4×4, 1×1). 

We learn FCRFs that model various-degree long-range 

dependencies between observations (e.g., ω=0 or 1). We 

empirically adjust the parameters of the reduced dimension 

d and the kernel width σ  of KPCA under the supervision 

of the recognition rates. 

5.3.  Results and analysis 

The activity recognition results on the above two 

datasets are clearly summarized in Table 1, where CCR 

means correct classification rates. From Table 1, we can 

basically draw the following conclusions: 1) Dynamic 

silhouette variations are indeed informative for analyzing 

human activities; 2) The proposed framework can 

effectively recognize human activities performed by 

different people with different body builds and different 

motion styles and speeds; 3) The recognition accuracy 

generally decreases as the sub-block size increases, 

especially quickly in case of 8×8 (note that the original 

silhouette image size is only 64×48 here); 4) Raw 

silhouette representation (i.e., the sub-block size is 1×1) 

performs best, though it is a little computationally 

intensive. This is because it keeps full information while 

other block-based features with bigger sizes considerably 

lose silhouette shape information; Although the 

block-based features might introduce some discretization 

errors, it gives an insight on how to select a good tradeoff 

between accuracy and computational cost in real 

applications; and 5) The introduction of long-range 

observations in the FCRF models generally improves the 

recognition accuracy (an exception, as bolded in table, may 

be due to over-fitting of parameter training). 
 

Table 1. Accuracy of activity classification using FCRF 
 

Dataset I (100 tests) Dataset II (90 tests) CCR 

Size (D) ω=0 (%) ω=1 (%) ω=0 (%) ω=1(%) 

1×1 (3072) 100.0 100.0 94.44 97.78 

4×4 (192) 98.00 93.00 87.78 92.22 

8×8 (48) 71.00 78.00 73.33 77.78 

5.4.  Comparison 

Currently, activity recognition is performed by either 

template matching or state-space approaches [1]. Here, we 

select a few schemes, namely one template matching 

method based on the Hausdorff distance metric and two 

state-space methods using HMM and linear-chain CRF 

respectively, to replace the FCRF model in the embedded 

space for the purpose of comparing their performance. 

Hausdorff-based matching: The projection trajectory of 

a sequence can be simply considered as a point set. We 

adopt the symmetric mean Hausdorrf distance to measure 

the similarity between a test and all reference activities (i.e., 

templates). The test is recognized as the class of the 

reference template with the minimum dissimilarity value. 

HMM model: We train an ergodic HMM model for each 

class of activity. Each model has five states and uses single 

Gaussian emission models. Test sequences are passed 

through each of these trained models, and the model with 

the highest likelihood is chosen as the recognized activity. 

CRF model: We train a linear-chain CRF model where 

each class had a corresponding state. During evaluation, 

we perform the Viterbi decoding and assign the sequence 

label based on the most frequently occurring activity label 

per frame. We also carry out experiments that incorporate 

different long-range dependencies in the same way 

described in the FCRF experiments. 
 

Table 2. Activity classification using different schemes 
  

Models Accuracy (%) 

Hausdorff-metric based matching 82.00 

Hidden Markov Model 89.00 

CRF (ω=0) 92.00 

CRF (ω=1) 95.00 

Factorial CRF (ω=0) 100.0 

Factorial CRF (ω=1) 100.0 

 

Table 2 summarizes activity classification accuracies 

using different schemes on Dataset I with raw silhouette 

representation, from which it can be seen that: 1) Template 

matching performs worst. This may be due to its sensitivity 

to noisy features and the inability to explicitly capture 

temporal transition; 2) State-space methods generally 



 

outperform template matching-based method, though they 

are computationally expensive; 3) Both CRF and FCRF 

have better performance than HMM, which shows that 

discriminative models are generally superior to generative 

models; 4) FCRF performs better than CRF, even when 

long-range dependencies are not considered, which 

demonstrates the advantage of jointly discriminative 

learning by information sharing between different label 

sequences; and 5) Performance of both CRF and FCRF is 

improved with increased window sizes, which shows that 

incorporating long-range dependencies is useful. 

5.5.  Robustness test 

We construct two experiments for robustness test with 

respect to silhouette quality and other challenging factors. 

Note that the results reported below are in terms of raw 

silhouette representation and FCRF with ω=1. 

Noise-corrupted silhouettes: Though being imperfect, 

the silhouette masks used for the above experiments are 

relatively smooth. A simple method to check sensitivity to 

silhouette quality is to add various amounts of synthetic 

noise to silhouette images to simulate corrupted silhouettes. 

Since the silhouette image is binary, we use ‘salt & pepper’ 

noise. A parameter, the noise density, is used to represent 

the percentage of the affected pixels in the whole image, as 

shown in Fig. 6 (top). We use original (uncorrupted) 

silhouette sequences for training, and the noise-corrupted 

silhouette sequences for testing. The results are shown in 

Fig. 6 (bottom), from which we can see that the proposed 

framework can tolerate a considerable amount of noise 

(e.g., 25%). This is probably because the statistical nature 

of FCRF renders overall robustness to both representation 

and recognition. 
 

      
 

Noise Density CCRs (%) 

0.05 100.0 

0.10 100.0 

0.15 100.0 

0.20 100.0 

0.25 97.00 

0.30 90.00 

0.35 72.00 

0.40 63.00 

0.45 42.00 

0.50 27.00 
 

Figure 6. Silhouette images with different degrees of synthetic 

noise (top): From left to right: noise densities are respectively 0, 

0.1, 0.2, 0.3, 0.4, and 0.5, and the accuracies of activity 

classification with respect to different noise densities (bottom)  
 

Other factors: We also consider the robustness of our 

method with respect to other factors such as different 

clothes, occlusion and motion styles. The walking action is 

one of the most common motions in real life. Here we test 

10 walking sequences captured in different scenarios [7] on 

Dataset II. Some example images and the associated 

silhouettes are shown in Fig. 7. In contrast to synthetic 

noise-corrupted silhouettes, the silhouettes here exhibit 

deformations of human shapes produced by realistic 

variations, compared to normal walking pattern.  

 
 

Figure 7. From left to right and from top to bottom: diagonal walk, 

walk with a dog, walk and swing a bag, walk in a skirt, walk with 

the legs occluded partially, sleepwalk, limp, walk with knees up, 

and walk when carrying a briefcase, respectively 
 

  Table 3 summarizes the test results including the first 

and second best matches, from which it can be seen that, 

except for four sequences, all other test sequences are 

correctly classified as the ‘walk’ action. This shows that 

the proposed method has relatively low sensitivity to 

considerable changes in scale, clothes, partial occlusion, 

and irregularities in walking forms. 
 

Table 3. Robustness evaluation with respect to other factors 
 

5.6.  Discussion and future work 

Although we could currently not provide a theoretical 

explanation for why the additional complexity of FCRF is 

favored for human activity recognition, there are marked 

Test sequences Varying conditions Results 

Diagonal walk Scale and Viewpoint Pjump (walk) 

Walk with a dog Non-rigid deformation Run (skip) 

Walk and swing bag Rigid deformation Skip (walk) 

Walk in a skirt Clothes Walk (side) 

Walk with occluded legs Partial occlusion Walk (jump) 

Sleepwalk Walking style Side (skip) 

Limp Walking style Walk (jump) 

Walk with knees up Walking style Walk (jump) 

Walk/Carry briefcase Carried object Walk (skip) 

Normal walk Background  Walk (skip) 



 

improvements in recognition accuracy in our experiments. 

Further performance evaluation is still needed on larger 

and more realistic datasets, in order to be conclusive. 

We have explored the KPCA for discovering the action 

space, but its performance is somewhat dependent on the 

selection of the width of the kernel function, as well as the 

kernel function itself. How to automatically set the optimal 

parameters involved will be investigated. 

Different cues have various discriminative abilities, e.g., 

silhouettes, shapes, trajectories, optical flow, etc. Here we 

have only tried the simple silhouette cue. It is conceivable 

that fusion of multiple cues is ideal for improving the 

algorithm’s effectiveness and robustness. 

It would be interesting to systematically investigate how 

long-range observations should be considered for optimal 

recognition. We have used a model with simple first-order 

state dependency, but it would also be interesting to study 

longer-range state dependencies, e.g., trigrams. In addition, 

generative and discriminative models have their own 

advantages in modelling temporal sequences. The effective 

combination of both models is also a part of future work.  

6. Conclusion 

This paper has described an effective probabilistic 

framework for human activity recognition in monocular 

video. The novelty of the method is two-fold: a) in feature 

extraction and representation, we selected simple but 

easy-to-extract space-time silhouettes as inputs, and 

embedded them into a low-dimensional kernel-derived 

space; and b) in activity modeling and recognition, we 

presented the first use of FCRF in the vision community, 

and demonstrated its superiority to both HMM and general 

CRF. The proposed framework is not dependent on the 

features used, so we believe that it can be easily extended 

to other types of temporal data analysis. 
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